Residue Placement and Rate, Crop Species, and Nitrogen Fertilization Effects on Soil Greenhouse Gas Emissions

نویسندگان

  • Jun Wang
  • Upendra M. Sainju
  • Joy L. Barsotti
چکیده

High variability due to soil heterogeneity and climatic conditions challenge measurement of greenhouse gas (GHG) emissions as influenced by management practices in the field. To reduce this variability, we examined the effect of management practices on CO2, N2O, and CH4 fluxes and soil temperature and water content from July to November, 2011 in a greenhouse. Treatments were incomplete combinations of residue placements (no residue, surface placement, and incorporation into the soil) and rates (0%, 0.25%, and 0.50%), crop species (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow), and N fertilization rates (0.11 and 0.96 g·N·pot). Soil temperature was not influenced by treatments but water content was greater under fallow with surface residue than in other treatments. The GHG fluxes peaked immediately following water application and/or N fertilization, with coefficient of variation (CV) ranging from 21% to 46%, <50% of that reported in the field. Average CO2 and N2O fluxes across measurement dates were greater under wheat or fallow with surface residue and 0.96 g·N·pot than in other treatments. Average CH4 uptake was greater under fallow with surface or incorporated residue and 0.11 g·N·pot than in other treatments. Doubling the residue rate increased CO2 flux by 9%. Greater root respiration, N substrate availability, and soil water content increased CO2 and N2O emissions under wheat or fallow with surface residue and high N rate but fallow with low N rate increased CH4 uptake. Controlled soil and environmental conditions substantially reduced variations in GHG fluxes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Effects of 3,4-Dimethylpyrazole Phosphate on CH4 and N2O Emissions in Paddy Fields of Subtropical China

3,4-Dimethylpyrazole phosphate (DMPP) has been widely employed to reduce nitrogen leaching and greenhouse gas emissions in the soils of dry farmlands. However, the effects of DMPP on the dynamics of nitrogen in paddy fields remain unclear. For this study, treatments with 0%, 0.25%, 0.5%, 1%, or 1.5% DMPP levels of nitrogen fertilization plus urea were designed to determine the effects on greenh...

متن کامل

A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cro...

متن کامل

Impact of nitrogen fertilization on soil–Atmosphere greenhouse gas exchanges in eucalypt plantations with different soil characteristics in southern China

Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We cond...

متن کامل

the effect of granulated wood-ash fertilization on soil properties and greenhouse gas (GhG) emissions in boreal peatland forests

The amount of wood ash produced in power plants is increasing with increasing use of forest biomass in energy production. Wood ash can be recycled as fertilizer especially in boreal peatland forests naturally rich in nitrogen. Improved nutrient availability and increases in soil pH can enhance microbial activities, decomposition of organic matter and greenhouse gas (GHG) emissions. We studied t...

متن کامل

Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China

Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Deni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013